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Abstract. In this work we tackle the problem of se-
mantic image segmentation with a combination of
convolutional neural networks (CNNs) and condi-
tional random fields (CRFs). The CRF takes con-
trast sensitive weights in a local neighborhood as
input (pairwise interactions) to encourage consis-
tency (smoothness) within the prediction and align
our segmentation boundaries with visual edges. We
model unary terms with a CNN which outperforms
non data driven models. We approximate the CRF in-
ference with a fixed number of iterations of a linear-
programming relaxation based approach. We exper-
iment with training the combined model end-to-end
using a discriminative formulation (structured sup-
port vector machine) and applying stochastic sub-
gradient descend to it.

Our proposed model achieves an intersection over
union score of 62.4 in the test set of the cityscapes
pixel-level semantic labeling task which is compara-
ble to state-of-the-art models.

1. Introduction

The task of semantic segmentation is to compute a
class label for each pixel in the image. Classes can be
e.g., car, street, pedestrian, etc. Solving this problem
with hand-crafted methods is hard. However, recent
improvements in computer hardware and the semi-
nal work of Krizhevsky et al. [14] made it possible
to train deep convolutional neural networks (CNNs)
with millions of parameters on graphic processing
units (GPUs). Since then, CNN-based approaches
significantly improved the performance compared
to hand-crafted methods in various computer vision

Figure 1. Abstract representation of our model containing
its building blocks. The input is used to compute weights
for the pairwise interactions in the CRF. Simultaneously
a CNN computes unary potentials which are used in the
CRF to produce the final output. No further pre- or post-
processing is performed.

tasks.

State of the art CNN architectures commonly con-
sist of pooling layers. The advantages of pooling
layers are i) the computation of descriptions of the
image content at different levels of abstraction and
ii) the introduced invariance to spatial deformations.
However, exactly these pooling layers make it more
difficult to apply these network architectures to prob-
lems requiring dense outputs such as semantic seg-
mentation. Simply upscaling the coarse solution
is often visually not pleasing due to blurred edges.
Therefore these models are extended to keep spatial
information [18] or to directly learn a refinement [6].

CNNs are known to be very good in extracting
features from images and conditional random fields
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(CRF) are often used to incorporate prior knowledge
in terms of a regularizer. In this work we investi-
gate a hybrid CNN+CRF architecture to combine the
best of both worlds. Instead of using the CRF as a
post-processing step for the output of the CNN, we
are tackling the challenging problem of training this
CNN+CRF combination jointly. We want to empha-
size that we do not use the well known fully con-
nected CRF of [12], but the linear-programming re-
laxation based approach of [25], due to its efficiency.
We show how to compute a gradient for training
our hybrid model jointly using a structured output
support vector machine (SSVM) approach in a non-
linear setting.

2. Related Work

The present work uses the hybrid architecture
and the training method similar to [11], where au-
thors applied it to the stereo reconstruction prob-
lem. The setting in this paper is somewhat different
in the CRF model interactions (classification versus
depth), CNN architecture (deep model versus shal-
low in [11]) and the final application loss (intersec-
tion over union versus truncated l1).

Our model consists of two main building blocks.
First, we use a CNN to extract suitable features for
semantic segmentation from data. The output of the
CNN is then used as unary costs in a CRF formu-
lation. In a final step, the CRF optimizes the joint
energy of the data-cost and a consistency-enforcing
smoothness prior.

Convolutional Neural Networks CNNs are
among the top performing models for computer
vision tasks like image classification [14, 26], object
detection [22, 7, 17] and semantic segmentation
[16, 3, 18, 32] for the last couple of years. Backed
by steadily increasing computational power learn-
ing models with millions of parameters became
manageable. In image classification, striding or
pooling is used to create abstract, low resolution
representations of images to obtain a single label per
input image in the end. In contrast to classification,
the difficulty in semantic segmentation is to assign
a label to every pixel in an image to obtain a so
called dense prediction. Losing spatial information
throughout the model makes correct predictions at
object boundaries difficult. Nonetheless, abstract
representations are important and many approaches
to semantic segmentation use a network trained

for classification such as [26] as a starting point
[6, 16, 3, 31, 18, 19, 30, 32].

Deep CNNs mostly use pooling or striding at con-
secutive layers of the network to obtain abstract and
spatial invariant representations. For dense predic-
tions, it is a common approach to use upsampling or
deconvolution to reconstruct high resolution predic-
tions [18]. In contrast to that, Atrous convolutions
(or later called dilated convolutions [31]) were orig-
inally developed for efficient computation of the un-
decimated wavelet transform [9]. By filling filters
with holes (trous in french) this enables large recep-
tive fields without increasing the number of parame-
ters. This approach was used by [24, 20, 8] to obtain
dense features via a CNN. Using multi-scale context,
[3, 31] applied spatial pyramid pooling to further in-
crease the performance of such models.

Conditional Random Fields CRFs are probabilis-
tic models that incorporate relations between nodes
in a graph [15]. In the most general case the graph
is fully connected. The nodes represent discrete ran-
dom variables, defined over the set of possible labels,
that are conditioned on the input image. The edges
in the graph (pairwise terms) model label consistency
over node pairs. In the context of semantic segmen-
tation, nodes typically correspond to image pixel or
super-pixel.

Finding the best label for each node can be inter-
preted as an energy minimization problem.

To solve this problem for a fully connected graph,
[12] reformulates the computation of the model as
high dimensional filtering. This formulation is ad-
vantageous because it allows the filtering scheme [1]
to be applied to the problem. This approach is often
used as a post processing method, e.g., for semantic
segmentation [3].

Reducing the edges in the graph to a four-
connected neighborhood, [25] provides a heavily
parallelized GPU implementation. The methods in-
ference is fast enough to be performed during the
training stage instead of as post processing after-
wards. We use [25] to incorporate the CRF into the
learning procedure and train our model in an end-to-
end fashion. By doing so, the preceding CNN can
adopt to the capabilities of the CRF and hence pro-
vide richer feature representations.

End-to-End Learning The hybrid training of
CNNs and CRFs for structured predictions has been
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Figure 2. Simplified visualization of the unary network.
The model produces a predicted label assignment as well
as unary input to the subsequent CRF. Conv boxes rep-
resent multiple convolutions while Pool indicates max-
pooling. Up are upsampling stages that rescale the pre-
dictions to the original image resolution.

explored by others as well in recent history. Lin et
al. [16] approximate the gradient of a low resolution
CRF using the piecewise training method [27]. In
piecewise training, the marginal probability modeled
in a CRF is approximated with the product of indi-
vidual potentials which allows for a simpler gradient
computation.

Zheng et al. [32] unrolled the mean field itera-
tions of [12] in a recurrent neural network. They did
this by expressing a single iteration in the mean field
inference of their CRF as a sequence of standard con-
volutions. This approach requires the pairwise terms
to be modeled with high dimensional Gaussian fil-
ters but in turn allows for training their model with
the exact gradient through back-propagation. This is
in contrast to our approach where we use a SSVM
formulation in a nonlinear setting to approximate the
gradient of the CRF.

3. Model

We combine deep CNNs with CRFs to pair good
semantic reasoning with sharp prediction-borders.
Furthermore we refrain from using a CRF as a post

processing method and rather include it during train-
ing in an end-to-end fashion. The CRF takes unary
and pairwise terms as its input. The unary terms con-
sist of per-pixel independent data-costs and the pair-
wise terms guide the smoothing of the final output.

The main idea is that in a final learning phase, the
CNN is not trained to predict labels directly but re-
ceives error gradients from the CRF which does the
labeling instead. As a result, the CNN can move
some of its responsibilities regarding semantic seg-
mentation (e.g., sharp boundaries) to the CRF. This
procedure allows the CNN to deviate from a model
that predicts a labeling directly towards providing
richer features for the CRF hence increasing the over-
all performance.

Figure 1 shows an abstraction of our used model.
The input to the CRF is composed of unary- and pair-
wise terms. The unary input is generated through a
fully convolutional network [18]. The pairwise inter-
actions are modeled with a nonlinear transformation
of the image gradients (contrast sensitive weighting).
These pairwise interactions encourage label jumps at
strong object boundaries and discourage them within
objects. The resulting segmentation is then more
likely to align with edges in the image.

3.1. Unary Network

We build on the CNN architecture of [18]. We call
this network unary network, because it computes the
unary- or data costs in our CRF formulation (defined
in (2)). The network is based on the VGG16 net [26]
and includes additional skip-connections and upsam-
pling layers in order to achieve fine grained predic-
tions. To make this section self-contained, we briefly
review the architecture of this network and its build-
ing blocks.

Figure 2 shows the architecture of the unary net-
work. Conv blocks indicate convolutional layers
which are at the core of CNNs. They are used to
extract learnable feature-maps from the given input.
The output of each convolution layer is activated us-
ing the ReLu function. Stacking multiple layers to-
gether allows to learn features of different abstrac-
tion. Convolution can be seen as filtering the data
with a (typically small) kernel. As a result, each
output neuron only sees a small subset of the in-
put called receptive field. Pool blocks indicate max-
pooling layers. They reduce the spatial resolution by
aggregating information of nearby pixels. This al-
lows the network to learn hierarchical features at dif-
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ferent levels of detail. The representation at the end
of the lowest branch has passed the most pooling lay-
ers and therefore has the lowest spatial resolution. By
upsampling that representation using an up-layer we
obtain a full scale prediction with poor segmentation
borders but high certainty within objects. Following
[18] we add skip branches to the network. As seen
in figure 2, these branches forgo pooling operations
to preserve finer details at the cost of having a less
abstract (and therefor less noise resistant) represen-
tation of the data. They guide the low resolution pre-
diction along object boundaries.

3.2. Conditional Random Fields

While in a fully convolutional network the relation
between two output neurons is given by the overlap
in their receptive fields, CRFs allow to model this
relation directly using pairwise interactions.

With the energy f(x|I, θ), which is defined over
a set of variables x conditioned on an input image I
and parameters θ, the CRF is a Gibbs distribution of
the form

P (x|I, θ) =
1

Z(I, θ)
exp (−f(x|I, θ)) , (1)

where Z(I, θ) is the partition function [15]. Each
variable represents a label from the set L =
{l1, l2, . . . , lN}. The energy of a label assignment
x ∈ L|V| is composed of unary terms ψi and pair-
wise interactions ψi,j and can be written as

f(x|I, θ) =
∑
i∈V

ψi(xi) +
∑
i,j∈E

ψi,j(xi, xj), (2)

where V is the set of variables in the input I and E
is the set of edges between variables. Note that we
use a four connected grid for E here, but in general
an arbitrary set of connections is possible.

Finding the label assignment with the highest
probability is equivalent to minimizing the CRF en-
ergy, which can be written as

x̄ ∈ arg min
x
f(x|I, θ). (3)

In the energy model (2), ψi are unary terms which
model each pixel individually. The unary terms are
constructed from a probability distribution over all
possible labels which is provided though the unary
CNN1. With pi(xi) being the xi-th element of that
probability distribution at location i, we define

ψi(xi) = −pi(xi). (4)
1Note that this is not the distribution of equation (1)

ψi,j are pairwise terms that penalize label jumps.
Using the Iverson bracket J·K notation, we define the
locally weighted Potts model [21] as

ψi,j(xi, xj) = wi,jJxi 6= xjK, (5)

where weights wi,j depend on the image I . If xi
and xj are assigned the same label, ψi,j(xi, xj) is
zero and wi,j otherwise. We choose weights that dis-
courage label jumps in homogeneous regions (high
weight) and encourage them along borders (low
weight). As a result, the solution of equation (3) is
more likely to align its segmentation boundaries with
visual edges in the input image I . In that sense we
define contrast sensitive weights [2] as

wi,j = λ exp
(
−α‖Ij − Ii‖β

)
, (6)

where λ weights unary against pairwise terms and α
and β are parameters of the model. Furthermore, we
restrict the weights to be symmetric i.e., wi,j = wj,i.

3.2.1 Gradient Estimation

In oder to train the full model, we need to propa-
gate gradients of the loss functions though the CRF
to the CNN. Despite our final evaluation criterion is
intersection over union, we start by optimizing the
Hamming loss. Given the predicted solution x̄ and
the ground truth labeling x∗, the Hamming loss is

l(x̄, x∗) =
∑
i∈V

Jx̄i 6= x∗i K. (7)

The goal is to optimize this loss in parameters sub-
ject to x̄ being a minimizer, i.e. satisfies (3). In a dis-
crete setting, minimizing w.r.t. x is non-trivial since
the solution only changes if the parameters pass cer-
tain breakpoints. Therefore the gradient is zero al-
most everywhere which makes training impossible.
Instead we relax the problem to an upper bound of
the loss and minimize that instead. This approach
is known as structured support vector machine with
margin rescaling [23, 29] and will be reviewed next.

Overview of SSVM Without further restrictions
we consider a weighted loss γl(x̄, x∗) hereafter.

The predicted label assignment x̄ has the low-
est energy f(x̄) and is therefore either equal to the
energy of the true label f(x∗) (in the case where
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x̄ = x∗) or smaller than that energy. Keeping that
in mind, we obtain an upper bound l̄(x∗) from

γl(x̄, x∗) ≤ max
x:f(x)≤f(x∗)

γl(x, x∗) (8a)

≤ max
x:f(x)≤f(x∗)

γl(x, x∗) + f(x∗)− f(x) (8b)

≤ max
x

γl(x, x∗) + f(x∗)− f(x) (8c)

= l̄(x∗). (8d)

The value l̄(x∗) can be also equivalently written as
finding the minimum ξ such that

∀x : γl(x, x∗) + f(x∗)− f(x) ≤ ξ, (9)

which reveals the margin property, i.e., in the sepa-
rable case the energy f(x∗) should be smaller than
any other energy by at least γl(x, x∗). If this is not
possible, then the statement is relaxed by the slack
variable ξ. Here, γ weights the margin against the
energy barrier.

A subgradient of l̄(x∗) w.r.t. the energy volume at
location i, fi(xi) is given by

∂

∂fi(xi)
l̄(x∗) = Jx∗i = xiK− Jx̂i = xiK, (10)

where x̂ ∈ arg minx f(x) − γl(x, x∗) is a solution
(among possibly many) of the loss augmented infer-
ence problem. Since we can perform inference only
approximately, we take x̂ to be an approximate solu-
tion resulting after a fixed number of iterations.

As a result of minimizing the upper bound of the
loss function, we eventually also lower the actual
loss. Another way of interpreting this is that we re-
peatedly increase the energy of whichever label vi-
olates the statement in equation (9) the most while
reducing the energy of the correct label at the same
time.

4. Training

We use gradient descent to train our model. There-
fore we estimate the gradient of a CRF and propagate
it back though the network. The method described in
section 3.2.1 gives a fixed magnitude gradient which
means that the learning rate has to be small in order
to reach good local minima in the loss function. As
a result, we need to pretrain our unary model before
we can jointly train the full model.
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Figure 3. Training progress evaluated on the validation set.
The IoU is printed for classes and categories (groups of
classes). Vertical lines mark the beginning of a new train-
ing stage. Skip indicates that additional skip branches are
added. CRF indicates the joint training of CNN and CRF.

4.1. Pretraining the Model

Due to the fixed magnitude of the gradients in
equation (10) and the consequential slow conver-
gence rate, training our model from scratch is im-
practicable. We therefore consider the prominent
VGG16 model of [26] as a reasonable initialization
for our purpose. The model is then modified follow-
ing [18] to be suitable for semantic segmentation. By
doing so we transform the last fully connected layers
to convolutional ones and add two skip-branches as
indicated in figure 2. We use the training parameters
of the Pascal model of [18] but adjust the unnormal-
ized learning rate to match the larger images in the
dataset. We then use stochastic gradient descend to
pretrain our unary model (no pairwise interactions in
the CRF) in three stages. At first we do not use any
skip branches and train the low resolution prediction.
Then we add one layer at a time and repeat the fine
tuning. Note that we subsample the data by a factor
of 2 due to hardware limitations.

In a final training stage, we jointly train CNN and
CRF. To that end we use the gradient of section 3.2.1
and update parameters with a fixed and normalized
learning rate of 1 × 10−10 to account for the previ-
ously outlined gradient magnitude.

Figure 3 shows the training progress by displaying
the intersection over union (IoU; see Score in sec-
tion 5.1) over the training epochs. The score is eval-
uated in the validation set (which was not used for
learning) of the Cityscapes dataset (see section 5.1).
Each stage is trained until convergence. The start of
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the next stage is marked as a vertical line in the plot.

4.2. Incorporating Pairwise Interactions

We use the linear programming relaxation based
method of [25] (Dual MM) for CRF inference. This
method performs a dual block-coordinate descent al-
gorithm whose main advantage is its massively par-
allel implementation2. With a small number of iter-
ations (15 in our case), [25] provides results that are
comparable to the best sequential algorithms.

To find an suitable parameter setting for equa-
tion (6), we perform an exhaustive grid search. Then
our network is jointly trained by back-propagating
the gradients (equation (10)). For this, the loss aug-
mented inference problem has to be solved for each
training iteration. We can see the slight performance
gain at the vertical crf line in figure 3. Although the
benefits might seem small, section 5 shows that this
is still a valuable improvement over the CNN alone.

5. Experiments

Using the Caffe [10] and Theano framework [28]
to implement our models, we investigate the impact
of CRFs and joint training on semantic segmentation.
We consider two models: our unary- and combined
network. We fixate the following hyper-parameter of
our model for all conducted experiments: α = 35,
β = 0.9, λ = 2.5 and γ = 0.1. In the following, we
give a qualitative comparison of both models.

5.1. Benchmark

We use the Cityscapes Dataset [4] to train and
evaluate our approach. This recently released
database consists of 5.000 images with high qual-
ity fine annotations. The samples were taken in 50
different cities throughout the year to reduce biases
in the data. The set is split into sets of size 2.950,
500, 1.250 for training, validation and test respec-
tively. The 19 different classes in the database rep-
resent various things e.g., cars, humans, streets or
vegetation. Additionally the dataset provides 20.000
images with coarse annotations which are not used in
this work.

Score The primary measurement of prediction
quality on the dataset is the PASCAL VOC
intersection-over-union (IoU) [5] which is also
known as the Jaccard index. The measure is de-
fined with true-positive- (TP), false-positive- (FP)

2Implementation provided by the authors of [25].
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CNN only ∗ 63.8 81.5
CNN+CRF ∗ 64.1 81.2
CNN+CRF (joint) ∗ 64.4 81.9

Ours ∗ 62.4 82.3
[19] ∗ ∗ 64.8 81.3
DeepLab [3] ∗ 63.1 81.2
CRF as RNN [32] ∗ 62.5 82.7
FCN 8s [18] ∗ 61.9 -

LRR-4x [6] ∗ 71.8 88.4
Adelaide [16] 71.6 51.7
DeepLab [3] 70.4 86.4
Dilation10 [31] 67.1 86.5
[13] ∗ 66.3 85.0
FCN 8s [18] 65.3 85.7
[30] ∗ 64.3 85.9

Table 1. Comparison of different approaches to the pixel
level semantic segmentation task on the cityscapes dataset
[4]. Ours indicates the score of the jointly trained
CNN+CRF model in the test set. Italicized methods were
evaluated in the validation set, other ones in the test set.
The results for other models on this data were taken from
their respective paper if available or from [4] otherwise.
The score for FCN 8s [18] on half sized images was taken
from the supplementary material of [4] where no IoU
score for categories is listed. See section 5.1 for a detailed
discussion of this table.

and false-negative (FN) pixel predictions for each
class as

IoU =
TP

TP + FP + FN
. (11)

The final score is then computed as the average of the
individual class scores. This metric penalizes false-
positive predictions i.e., classifying all pixel as car,
as opposed to only considering the average classifi-
cation rate. Note that IoU Classes is computed as the
average over individual classes while IoU Categories
denotes the average over groups of classes e.g., vehi-
cle = {car, bus, bicycle, . . .}.

Results Table 1 shows the score of our approach on
that dataset and compares it to current state-of-the-art
models. CNN only is our unary network which disre-
gards pairwise interactions. CNN+CRF indicates our
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Figure 4. Comparison of the CNN only model and the combination of CNN and CRF. All label assignments are blended
over the input image to better show the errors around object borders. Column (a) contains the ground-truth image (note
that red indicates the ignore-label). Column (b) displays the results obtained without a CRF layer while the last column
shows the results of the joint model (CNN followed by a CRF). For better visualization we marked four regions (A to C)
and enlarged them in figure 5. Best viewed in color on a screen.

combined model of CNN and CRF. The lines con-
taining joint training in brackets indicates that the
model was jointly trained as compared to just us-
ing the CRF for post processing. Lines containing
validation were evaluated locally on the validation
set while the test line is taken from the public test
servers of [4]. Columns coarse and stereo indicate
if a model additionally used weakly labeled (coarse)
or stereo data for training respectively. There is an
obvious gap between models operating on half sized
images and ones that use the full data resolution. We
expect that retraining our model on full scale images
will give a similar performance increase. We want to
validate that in future work.

5.2. A Comparison of our Models

To illustrate the benefits of the combined model
over the unary network, we provide a comparison of
our models. In the first group of models in table 1,
we compare the three stages of our approach (unary
network, CRF for post processing, joint training) on
the validation set. We can observe that the use of a
CRF as well as the joint training steadily increase the
score for the IoU Classes task.

In the following, we provide a qualitative compar-

ison of the unary network and the trained combined
model based on a few exemplary predictions. Fig-
ure 4 shows the desired groundtruth (a) as well as
predictions of the unary network (b) and the com-
bined model (c). We mark four regions (A to C)
which are enlarged in figure 5 and further discussed
next. In figure 5 we additionally print the pairwise
interactions in column (e). Hereby, dark regions cor-
respond to low energy which encourages label jumps
while bright regions indicate high energy and there-
fore discourages label discontinuities. For instance
the weights in row A show low cost for a label jump
around the head of the person in the center. As a re-
sult, the CRF energy is lower in that region and the
segmentation boundary is moved towards it. Note
that the low cost region is wide enough to allow mul-
tiple boundaries. Due to the four connected neigh-
borhood in our CRF implementation, the model tends
to prefer grid-aligned solutions. We believe that by
extending the neighborhood of the CRF to model di-
agonal or sparse long range connections can lower
that tendency. Row B shows similar effects around
the front wheel of the bicycle. Additionally it con-
tains an example of how the CRF enforces consis-
tency (smoothness) of the solution. We can observe

7



Figure 5. Scaled versions of marked regions in figure 4.
The first three columns contain the groundtruth labeling,
the prediction of the CNN model and the results of our
CNN+CRF model respectively. The last column shows
the pairwise costs of neighboring pixel. Best viewed in
color.

that small outliers (visible in the CNN prediction
within the pink region) are removed because the cor-
responding pairwise costs are too high. Finally row
C contains an example of how fattened foreground
and curvaceous boundaries become aligned with the
true objects in the combined model.

5.3. Comparison with the State-of-the-Art

To justify our usage of the locally connected CRF
implementation of [25] over the commonly used
fully connected CRF of [12], we compare our model
against the work of [32]. The authors of [32] also
use the FCN-8s network of [18] to provide unary
terms to the fully connected CRF of [12] which is
unrolled and interpreted as layers in a recurrent net-
work. Additionally they also operate on half sized
images. An advantage of that approach is that it al-
lows to directly compute the exact gradient instead
of an approximation. Their model is restricted to for-
mulate the pairwise interactions as high dimensional
Gaussian filters. In contrast to that, our model ap-
proximates the gradient of the CRF using a SSVM
formulation which in turn allows for arbitrary defini-
tion of pairwise potentials. Table 1 shows that both
approaches achieve similar improvements over the
FCN-8s model and yield almost identical IoU scores,
even though our model is simpler.

6. Discussion

In this paper, we showed how to train a combina-
tion of CNN and CRF for semantic image segmenta-
tion using a SSVM formulation. The joint training al-
lowed the CNN to adapt to the CRFs capabilities and

hence improved the quality of the output. Pairwise
interactions encouraged label discontinuities across
visual edges in the input image. The predicted seg-
mentation boundaries were more likely to align with
the true object borders because of that.

In future work we want to replace gradient-based
pairwise weights with a second CNN. We believe
that contrast sensitive weights have room for im-
provement and that moving pairwise interactions to-
wards penalizing label jumps within objects is rea-
sonable. Additionally we plan to extend the current
Potts model to general label compatibilities such that
e.g., the label pair {car, street} is more likely than
{car, bicycle}. We also believe that changing the
neighborhood for pairwise interactions in the CRF to
model non-symmetric, diagonal and/or sparse long-
range interactions is beneficial for semantic segmen-
tation. Another interesting direction is to compare
different training methods and different loss surro-
gates, possibly addressing IoU score more directly,
within the SSVM approach.
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[12] P. Krähenbühl and V. Koltun. Efficient inference in
fully connected crfs with gaussian edge potentials.
Adv. Neural Inf. Process. Syst, 2011. 2, 3, 8
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